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Moral right and moral wrong often appear stable and universal, with similar principles recurring across time and place. But which values and issues are most central to morality can also vary greatly within cultures over time.
Currently, a large literature has helped reveal the aspects of human morality that are relatively universal, but moral change is much less well understood. As discussions of moral issues have shifted to digital environments—with
faceless strangers and concrete social rewards (e.g., likes and shares) for users with the “hottest takes” —it is especially important to understand whether and how cultural morality changes. Here we leverage a large social media
corpus spanning 9 years (N = 10.3M tweets) to 1) quantify the degree of semantic change in morality 2) understand how the content of the moral domain has changed and 3) test whether the prevalence of moral discussions has
changed. Thus, the present work offers an approach to quantifying and interpreting moral change, as well as revealing whether moralized discussions are growing more prevalent in society.

Moral Discussions Became More Prevalent

Method Morality Is a Dynamic Concept
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clustering on document embeddings and then fine tunes the topics on each year within the the second most semantic change on average. Examples of other concepts that consistently underwent from 2016 and later. The y-axis represents how semantically similar each topic is to morality. The x-axis
corpus semantic change were “Group Success”, “Risk”, and “Severe Weather” represents how many tweets belong to each topic. Prior to 2016, posts about moralized topics were less

prevalent than posts about less moralized topics, but this pattern has reversed.
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Semantic changes in morality appear to reflect
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cosine similarities > .3). Edges represent cosine similarities between concepts/topics. Colors of concepts/topics represent groups of concepts identified by a community detection algorithm.
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